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Many real-world applications have profited from netform inno-
vations in both modeling and solution strategies. Practical expe-
rience shows that advances in netform modeling and solution
strategies overcome many of the difficulties in conceptual de-
sign and problem solving of previous approaches to system op-
timization. Moreover, they provide the type of technologies re-
quired of truly useful decision-planning tools, technologies that
facilitate modeling, solution, and implementation. The ultimate
test and worth of computer-based planning models, however,
depends on their use by practitioners. In this tutorial, we show
how certain algebraic models can be viewed graphically using
netform modeling and describe several large practical problems
we have solved. Some of our insights can make it easier for
practitioners to take advantage of these technologies.

I he growth of the computer industry computer can record and manipulate ex-

has profoundly influenced many tremely large amounts of data. Without
areas, affecting none more dramatically this capability, many of the tools of man-
than management science. Knowledge agement science would be mere theoretical
about ways to solve optimization problems  niceties.
in industry and government has exploded The techniques for building, solving, re-
since World War 11, largely because the fining, and analyzing computer-based
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planning models have evolved steadily as
computer hardware has changed. This
evolution has spawned two new and im-
portant technologies, computer implemen-
tation technology and problem representa-
tion technology. Both have been strongly
affected by developments in the field of
optimization. Within the optimization field,
perhaps no domain has had a greater im-
pact, as the source of innovations in imple-
mentation and representation technology,
than network optimization. These innova-
tions are changing our notions about how

Knowledge about ways to
solve optimization problems
has exploded since World
War IL

to conceptualize and exploit optimization
problems. The technologies of computer
implementation and problem representa-
tion have profited from network optimiza-
tion chiefly because advances in this field
have intimately related problem solving to
the identification and exploitation of struc-
ture. Over the last decade and a half, the
development of models based on charac-
terizing structure for the purpose of insight
and more effective solution has resulted in
the field of netforms—or network-related
formulations. This field has (1) expanded
awareness among OR theoreticians and
practitioners of the range of problems that
can be formulated as networks and gener-
alized networks; (2) identified ways to ex-
press problems—and key components of
problems—in a network format, especially
in contexts that do not immediately sug-
gest this possibility; (3) introduced flexible
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notations to identify additional constrain-
ing conditions, such as “all-or-none” and
“multiple choice” flow restrictions (and in-
teger restrictions in generalized networks),
which make it possible to represent prob-
lems outside the usual network category in
a network-related framework; (4) devel-
oped a repertoire of model constructs to
document which netforms are best for
communication and which are best for so-
lution (not always the same); and (5)
evolved computer implementation strate-
gies to take fullest advantage of netform
representations.

The fertile interaction between computer
implementation technology and problem
representation technology associated with
these developments has greatly profited
from research on pure and generalized net-
work problems, subsequently adapted to
broader contexts. These innovations in-
clude those of Barr, Glover, and Klingman
[1977, 1979]; Bertsekas and Tseng [1988];
Bradley, Brown, and Graves [1977];
Cunningham [1979]; Galil and Tardos
[1986]; Gilsinn and Witzgall [1973];
Glover, Karney, and Klingman [1972,
1974]; Glover, Karney, Klingman, and
Napier [1974]; Glover and Klingman
[1988b]; Glover, Klingman, and Phillips
[1988]; Glover, Klingman, and Stutz
[1974]); Helgason, Kennington, and Lall
[1976]; Hung [1983]; Ikura and Nemhauser
[1986]; Jensen and Barnes [1980]; Karney
and Klingman [1976]; Kennington and
Helgason [1980]; Orlin [1984, 1988]; Ross
and Soland [1975]; Srinivasan and
Thompson [1972, 1973]; and Tardos
[1985]. This research has dramatically re-
duced the cost of solving problems in the
linear and mixed integer network domain,
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beyond the reductions due to improve-
ments in computer hardware or software.
For example, the cost of solving network
problems with 2,400 equations and
500,000 arcs has been reduced from thou-
sands of dollars in the late '60s to less than
$100 in the late '80s.

Using specialized network algorithms to
solve network problems provides signifi-
cant gains over using commercial linear
programming (LP) codes. The best solution
algorithm for pure network problems in
the late '60s was the out-of-kilter algo-
rithm [Dantzig 1963; Ford and Fulkerson
1962]. Testing in the late '60s through the
'70s, Glover, Karney, and Klingman [1974];
Glover, Karney, Klingman, and Napier
[1974]; Karney and Klingman [1976]; and
Srinivasan and Thompson [1973], showed

The cost of solving network
problems with 2,400 equations
and 500,000 arcs has been
reduced from thousands of
dollars in the late "60s to less
than $100 in the late '80s.

that the primal simplex algorithm was best
if one devised specialized data structures
and pivot and start procedures. In the '80s,
the testing of nonextreme point algorithms
[Bertsekas and Tseng 1988; Glover and
Klingman 1988b] began to challenge the
primal simplex algorithm; it is becoming
less clear which algorithm is best for pure
network problems. For generalized net-
work problems, the primal simplex algo-
rithm with specialized data structures is
still fastest.
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These advances in solution technology
have stimulated the development of mod-
eling techniques for handling a multitude
of problems that arise in applications of
scheduling, routing, resource allocation,
production, inventory management, facili-
ties location, distribution planning, and
other areas. These new modeling tech-
niques [Glover, Hultz, and Klingman 1978,
1979; Glover and Klingman 1977; Glover,
Klingman, and McMillan 1977; Glover and
Mulvey 1980] are mathematically and
symbolically linked to network and aug-
mented network structures and constitute
the central focus of netform technology.
This technology allows users to concep-
tualize formulations of their problems
graphically. Its pictorial aspect has proven
to be extremely valuable in communicating
and refining problem interrelationships
without the use of mathematics and com-
puter jargon. Thus it protects the nontech-
nical person against technical legerdemain
and exaggerated claims of model “real-
ism.” This technology also often yields a
model that can be solved as a sequence of
linear network problems or by merging so-
lutions to linear networks in progressively
refined stages.

Pure Network Models

Pure network problems embody a group
of distinct model types, including shortest
path, assignment, transportation, and
transshipment problems. Any of these net-
work problems can be characterized by a
coefficient matrix that has at most one +1
and one —1 entry in each column. The
most general of these model types is the
transshipment problem.

The transshipment model appears in
many applications, either directly or as a
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subproblem. An illustration of this model
for a cash-flow problem is depicted in Fig-
ure 1. The arrows in network models are
called arcs and the circles are called nodes.
Triangles leading into or out of nodes rep-
resent supplies and demands, respectively.
Arcs indicate allowable flow paths be-
tween nodes and have lower and upper
bounds, shown in parentheses, and costs,
shown in rectangles.

The objective in the transshipment prob-
lem is to determine how much to ship
along each arc within the limits stipulated
by the bounds in order to satisfy all sup-
plies and demands and to minimize total
cost. By satisfying supplies and demands
we mean that the total flow into the node
minus the total flow out must equal its de-
mand, and the total flow out of the node
minus the total flow in must equal supply.
For all other nodes, the flow into the node
must equal the flow out.

It is important to understand how a
transshipment problem may be stated
mathematically to appreciate the connec-
tions between graphical and algebraic
structures. To state a network problem al-
gebraically, we define a variable for each
arc. For example, let X;; denote the flow on
the arc from node i to node j and ¢; denote
the unit cost on this arc. Henceforth, an
arc will be denoted as an ordered pair (1, /)
where the first component specifies the
from node and the other component the fo
node. Next we create the objective function
for the problem as an expression involving
the costs and variables. For the problem in
Figure 1, the objective function would be

2Xac + 3Xap + 5Xpp + 2Xpe + 4Xcp + 3K

+ 10Xcc + 5Xpc + 3Xpe + 2Xec.
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Upon identifying the objective function,
we create a constraint for each node that
expresses the restriction on flow into and
out of the node. To do this, it is convenient
to view a supply as an inflow and a de-
mand as an outflow. Then the requirement
at each node can be expressed as Total In-
flow = Total Outflow, or equivalently,
Total Inflow — Total Outflow = 0.

The customary transposition of any con-
stant term of this equation to the right
hand side causes supplies to be denoted as
negative quantities and demands to be de-
noted as positive quantities. To see this,
consider constructing the “Total Inflow
— Total Outflow = 0" equation for node C
in Figure 1. The total flow into node C
consists of the five units of supply and
(Xac + Xpe). The total flow out of node C is
Xcr + Xeg + Xep. Thus we have 5 + X,¢
+ Xpe — (Xcr + X + Xep) = 0, or after
transposing the constant term, Xc + Xpc
— Xer — Xee — Xep = —5. Thus the supply
of five becomes expressed as a negative
quantity because of its movement to the
right hand side of the equality sign. On the
other hand, a demand, (which is included
in the outflow that is subtracted in the “in-
flow-outflow’” equation), appears as a posi-
tive quantity when moved to the right
hand side. This also discloses, incidentally,
that a supply may be viewed as a negative
demand, and vice versa. The entire alge-
braic statement of the capacitated trans-
shipment cash flow problem is also shown
in Figure 1.

Each X;; appears in exactly two node
equations, (the equation for node i and the
equation for node j). Further, since X;; con-
tributes to the outflow of the node i equa-
tion and to the inflow of the node j equa-
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Minimize ZXAC + SXAD + 5Xgp + 2XBE + 4Xep + SXCF - 1OXCG + 5Xpec + 3Xpg + 2xEG

Subject to
—Xac —Xap = =10
—Xsp  —Xae =-12
Xac —Xep —Xer  —Xee tXoc A
Xao  +Xso +Xco —Xpe —Xpe = 0
Xee —Xee = 0
Xcr = 18
Xea +Xpg HXeg= 12
0<Xpuc=T7,; 0<Xup=8; 0 =< Xgp = 10; 0 < Xge < 8; 0<Xep<10;
0 =< Xpc; 0 < Xcr; 0 < Xeg =10; 0= Xpg =15; 0<Xeg=<9

Figure 1: Capacitated transshipment cash-flow model. The nodes correspond to subsidiaries of
a central company that operates in different locations. The supplies and demands represent ex-
cess or deficit cash, respectively. Thus, nodes A, B, and C have excess funds, nodes D and E
have no funds, and nodes F and G have deficit funds.

The arc from node A to node C indicates that it is possible to transfer funds from subsidiary
A to subsidiary C. The absence of an arc indicates that it is not possible to transfer funds di-
rectly between the corresponding pair of subsidiaries (though it may be possible to transfer
funds indirectly by means of a sequence of arcs through intermediate subsidiaries). The arc
from node A to node C has a lower bound of 0, an upper bound of 7, and a cost of 2. The
numbers in the semi-circles on the arcs illustrate a solution which satisfies the node equations
and the bound requirements.

July—-August 1990 11
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tion, it appears with a coefficient of —1 in
the former and with a coefficient of +1 in
the latter. Thus, each column of the coeffi-
cient matrix has one —1 and one +1 entry.
If the restrictions at the nodes are stated as
inequalities rather than equations (that is,
Total Inflow — Total Outflow < 0 or Total
Inflow — Total Outflow = 0), then slack or
surplus variables are added to convert
these constraints to equations, and it is ad-
missible for columns to contain a single
nonzero entry. Inequality restrictions at
nodes generally arise by stipulating that
supplies or demands must be “at least”” or
“at most’” a certain amount.

By reversing the above steps, it is possi-
ble to represent any LP problem whose
coefficient matrix has at most one +1 and
at most one —1 entry per column as a
transshipment problem. That is, to con-
struct a graph that corresponds to such a
problem, create a node for each constraint
and an arc for each variable, affixing sup-
plies, demands and bounds in the manner
indicated.

Applications of Pure Network Problems

Pure network problems provide models
for many mathematical optimization prob-
lems and for major components of many
additional problems. Inventory mainte-
nance problems [Evans 1978; Taha 1971;
Wagner 1969] for example, typically ex-
hibit an underlying network structure. A
cousin of the inventory maintenance prob-
lem is the PERT/CPM problem, which
seeks the best way to sequence a complex
set of interdependent activities. The PERT/
CPM framework, which constitutes one of
the simplest network model forms, has
been used in a variety of practical applica-
tions (including construction of the Polaris
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submarine) and has been reported to save
substantial costs and greatly speed
completion of complex projects.

Other types of problems involving the ef-
fective management of resources also fre-
quently exhibit network structures. Such
problems are becoming increasingly impor-
tant in government and industry. Direct
network formulations of water resource
management problems, for example, are
finding use in a number of states. In these,
canals, river reaches, and pipelines take
the role of arcs, while reservoirs and
pumping stations take the role of nodes.
Planning over time frequently looms as a
major consideration in these applications.

The Texas Water Development Board
and the government of Poland introduce
what-if analyses into water resource man-
agement by using a succession of simula-
tions having alternative supply and de-
mand configurations and solve the result-
ing network for each simulation run. The
step of finding the optimum solution to
each network problem is used to determine
the best response to meet demands for wa-
ter use, given a particular supply-and-
demand configuration. (This use of simula-
tion, in which parameters are varied to
achieve what-if analyses by means of rig-
orous solution techniques, is to be con-
trasted with the common “quasi-
optimization” use of simulation.) To ana-
lyze the full range of relevant configura-
tions, roughly 500 such runs must be made
each month. The feasibility and cost-
effectiveness of such runs is due to the effi-
ciency with which the underlying
networks are solved.

The problem of determining flows and
heads in a general pipeline system (such as

12
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in municipal water systems) with reser-
voirs, pumps, gate and check valves, given
fixed inputs and withdrawals has been
shown [Collins et al. 1978] to be equivalent
to a convex transshipment problem under
the assumption of convex head losses.
Such problems are easily solved as ordi-
nary transshipment problems using a
piecewise linear approximation of the con-
vex function. Since the convexity require-
ments are usually satisfied for real pipe
networks, this is an example of another
class of real-world problems that can now
be handled by network procedures with
far greater effectiveness than by the
procedures used in the past.

Another important instance of the use of
network models occurs in manpower pro-
motion and assignment problems. AT&T
has developed such models to guarantee
acceptable hiring and promotion policies in
accordance with HEW rules and regula-
tions. A number of cash-management
problems can also be modeled as trans-
shipment problems. These models include
sources of funds in addition to cash (such
as maturing accounts and notes receivable,
sales of securities, and borrowing) and uses
of funds other than a single investment.
The generalized network model we will
discuss later makes it possible to further
incorporate discount, interest, and other
financial considerations directly into the
model.

Many nonlinear problems involve net-
work subproblems. One of the most basic
and prevalent forms of nonlinear problems
is the fixed-charge network problem,
whose major offshoots include the genre
known as location problems. The nonlin-
ear element of a fixed-charge network is
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the fixed-charge arc, which has the follow-
ing special property: whenever the arc is
“used” (that is, permitted to transmit
flow), a charge is incurred that is indepen-
dent of the amount of flow across the arc.
Fixed-charge networks have been used to
model problems of plant and warehouse
location, equipment purchasing and leas-
ing, personnel hiring, and offshore oil-
drilling platform location, among others
[Taha 1971; Wagner 1969].

To better utilize forecasting data and to
support economically rational operational
decisions, Klingman, Phillips, Steiger,
Wirth, Padman, and Krishnan [1987] and
Klingman, Phillips, Steiger, Wirth, and
Young [1986] developed an optimization-
based decision support system for planning
supply, distribution, and marketing, called
the SDM system, for Citgo Petroleum Cor-
poration. The SDM system integrates Cit-
go’s key economic and physical supply,
distribution, and marketing characteristics
over a short-term (11-week) planning hori-
zon. This time horizon incorporates inven-
tory planning and time lags for manufac-
turing and distribution. To model this tim-
ing problem, they partitioned the basic
model into time zones and employed repli-
cations of the basic model to accommodate
the distinct time periods (weeks), as shown
in Figure 2.

Top management uses the system to
make such decisions as where to sell prod-
ucts, what price to charge, where to buy or
trade products, how much to buy or trade,
how much of a product to hold in inven-
tory, and how much product to ship by
each mode of transportation. All informa-
tion is provided by location, by line of
business, and by week. The model incor-

13
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TIME ZONE 3

TIME ZONE 1

Initial Storage Inventory

WEEK 1 Initial In-transit

Inventory
Inventory Holding

Lake
Charles
DC
l Cost (TVM)

Min/Max
Inventory Level

WEEK 2

Lake
Charles
DC

In-transit Inventory Cost (TVM) I
+ Transportation

+ Handling Cost I
+ Marketing Overhead

Figure 2: Network representation of time zones and time periods. Single circles represent
product storage terminals, specifically a distribution center terminal at Lake Charles and other
terminals at Meridian, Birmingham, Atlanta, Spartanburg, Charlotte, and Richmond. Double
circles represent locations in a distribution pipeline called Colonial in each time zone. For ex-
ample, “Col A” represents the segment of the Colonial pipeline in time zone 1 which contains
the product storage terminals that are within one week's travel time from the refinery. “Col B”
represents the segment of the Colonial pipeline in time zone 2 which contains those terminals
between one and two weeks away, etc. (Double circles are used for pipeline nodes to make the
network easier to “read.” Due to the large size of the problem and the number of different
components which nodes were used to represent, the network diagram for the entire problem
also employs additional node symbols, such as half circles and ellipses.) The vertical arcs be-
tween product storage terminal nodes represent inventory held at storage terminals between
time periods. The diagonal arcs between pipeline nodes represent in-transit inventory. For ex-
ample, product which is in the “A” segment of the Colonial pipeline in week 1 will travel to
the “B” segment in week 2 (if it is not lifted into the Meridian or Birmingham terminals).
Thus week 1 demand in time zones 2 and 3 can only be satisfied by initial in-transit or storage
inventory, modeled by the supply triangles shown, since product cannot travel from Lake
Charles to Col B or Col C in one week. (Demand triangles, not shown, would be attached to
each product terminal node.)

porates the critical timing considerations tion, and marketing personnel associated
associated with all of these decisions. with each product). Each model is gener-
The SDM system contains a separate ated using input data from a corporate
minimum cost (or as an option, maximum  data base, and the optimal solution is ag-
profit) flow network model for each prod-  gregated into output reports tailored for
uct (corresponding to the product manag-  use by the individual operational manag-
ers who work with the supply, distribu- ers. The objective function for the profit
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NETFORM MODELING

maximization model is calculated as total
sales revenue less expenses, such as trans-
portation costs, terminal handling costs,
and the time value of money associated
with in-transit and terminal inventory. The
constraints of the model include forecasted
price and demand functions, inventory ca-
pacities, exchange agreement options, spot
market purchase and sale volume limits,
purchase, sale, and trade agreement op-
tions, and retail demand. Management can
also include preliminary shipment sched-
ules in the model as finalized decisions. Fi-
nally, the SDM system employs rule-based
artificial intelligence systems to arrive at
exchange agreement payback rules for
model constraints, and it uses an expert
system approach to screen output reports
to provide management with exception
reports.

Due to the complex combination of mul-
tiple product sources, distribution timing,
trading alternatives, and price sensitive de-
mands, the authors used a number of
modeling techniques to control the size of
the model and to keep the model in net-
work format and linear. These greatly ex-
tended the model shown in Figure 2. The
network framework was important for two
main reasons. First, the pictorial aspect of
network models was extremely valuable to
the authors in working with a broad spec-
trum of personnel to develop, validate, and
implement this integrated model. Second,
network models permit rapid solution
speed, which allowed management to re-
spond quickly to the dynamics of a com-
modity market industry by using the SDM
system extensively in what-if sessions. For
example, on a medium-sized computer, an
IBM 4381 mod 2, each product model con-
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sisting of approximately 3,000 equations
and 15,000 variables can be solved using
an efficient network optimization code
[Glover and Klingman 1982] in approxi-
mately 30 seconds. (To run the entire SDM
system, model generation requires about
two minutes and report processing about
seven minutes.) The SDM system allowed
Citgo to reduce product inventories by
$116 million (based on historical inven-
tory-to-sales ratios) resulting in a $14 mil-
lion per year reduction in working capital
costs. The system also provided many in-
sights into supply, distribution, and mar-
keting that contributed an estimated addi-
tional $2.5 million per year to bottom line
profits.

In another application of pure network
transshipment modeling, Klingman and
Phillips [1984] developed a new modeling
and solution approach to make enlisted
personnel assignment decisions for the
Marine Corps. Our military services seek to
accommodate three primary types of goals
or criteria in assigning enlisted personnel
to positions. Each goal type may have sev-
eral subgoals, leading to a model that has
many criteria or objective functions. These
criteria express the desire of the military to
fill as many positions as possible in some
priority fashion, the cost of assigning a
person to a position, the utility of such an
assignment to the military organization,
and the desirability of the assignment to
that person. In addition, the Marine Corps
also specifies proportionate or dispropor-
tionate percentage fill policies for handling
shortages within a job type. The criteria
are preemptive and are handled in order of
decreasing importance of the three goal
types: maximum fill, maximum priority
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distribution fill, and maximum fit.

To evaluate alternative modeling and so-
lution approaches to the Marine Corps’
problem, Klingman and Phillips used a
random problem parameter generator pro-
vided by the USMC to generate a single
test problem. The generator produced a
problem that had 10,000 persons, 240 job
types, and three job groups. Two of the
groups have proportional fill criteria and
the other a disproportional distribution fill
criteria. The highest priority group requires
5i persons to fill its ith job type and the
other groups require a constant number of
persons to fill their job types. The parame-
ter generator randomly generates eligible
person/job arcs and associates four fit cri-
teria coefficients with each one. Using this
parameter generator, Klingman and
Phillips developed a large-scale multicri-
teria pure network transshipment model
with 10,245 nodes, 748,930 arcs, and 11
criteria. (There are four fit criteria, three
priority-fill criteria—two proportional and
one disproportional, three job-group-fill
criteria, and an overall fill criterion to max-
imize the total number of people assigned
to jobs.) The model correctly handles the
proportionate and disproportionate per-
centage fill policies and simultaneously
yields integer solutions for large-scale
problems. Klingman and Phillips solved
the problem using six different weighting
strategies for aggregating the 11 criteria in
the model. The best of these strategies re-
quired about 127 minutes of CPU time on
a PRIME 550 mini-computer. It is signifi-
cant that this large-scale multicriteria test
problem could be solved on such a low-
cost computer (less than $200,000 in 1980)
in a reasonable period of time.
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Generalized Networks

The generalized network (GN) problem
represents a class of LP problems that has
received much less attention than it de-
serves. Recently, as many new generalized
network applications have been identified
and computer codes able to solve these
problems efficiently have emerged, gener-
alized networks are coming to be appre-
ciated as rivaling or even surpassing pure
networks in their practical significance.
Generalized networks include pure net-
works as a special case. The GN problem,
by allowing nonzero column entries other
than +1, is actually the broadest classifica-
tion of linear network-related problems.
GN problems arise in resource allocation,
production, distribution, scheduling,
capital budgeting, and other settings.

The most effective procedures for mod-
eling and communicating pure network
problems are based on viewing these prob-
lems as directed graphs. Generalized net-
work problems can also be represented as
directed graphs by means of appropriate
conventions. In particular, the coefficient
matrix can be transformed (if the variables
are bounded) so that at least one entry in
any column with two nonzero entries is
—1. In this way, a directed arc is created
that leads from the node associated with
the —1 to the node associated with the
other nonzero entry. (If both entries are
—1, the arc may be directed either way.) A
single nonzero entry in a column is repre-
sented by an arc that touches only one
node.

There is an important distinction be-
tween arcs in pure network problems and
arcs in GN problems. An arc of a general-
ized network has a multiplier. This multi-
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plier is the nonzero coefficient associated
with the node at the arrowhead of the arc
(that is, the terminal node of the directed
arc). In pure networks, this multiplier is
always +1.

These ideas are illustrated by the GN
problem shown in Figure 3 along with the
associated network. As with pure network
problems, each row of the coefficient ma-
trix is associated with a node and each col-
umn with an arc. That is, a node corre-
sponds to a problem equation and an arc
corresponds to a problem variable. Conse-

quently, each arc has a cost, lower bound,

and upper bound. Costs are shown within
rectangles, and bounds are shown within
parentheses. Arc multipliers are shown
within triangles.

The multiplier of a generalized network
problem acts upon the flow across an arc;
the amount of flow starting out on the arc
will not necessarily be the amount arriving
at the opposite end. Specifically, the flow
entering the arc is multiplied by the value
of the multiplier to produce the quantity of
flow leaving the arc. The arc’s cost, lower
bound, and upper bound refer only to the
units of flow entering the arc.

Minimize 1X52 + 5Xi3+ 3Xag + 1Xo4 — 4X3; — 9Xa
Subject to
Xy — 1%z —1Xa -0
2X,2 =~ xe5 —1X35 +1/3Xa32 =0
1/2X33 +1Xos —1Xaz —1Xas =0
—1/5X24 +3Xas — X4 =0
0=Xy< 5, 0= Xis <8, 0<Xi3=<4, 0 < Xp3 <6,
0 < Xy =5, 0 < Xa3, <3, O=Xgy =7, 10=<Xy=<10

Figure 3: Generalized network. Supply into node 1 and demand out of node 4 are modeled
using bounded arcs, rather than supply and demand triangles. Thus node 1 has a supply of at
most 5 while node 4 has a demand of exactly 10. (The arc out of node 4 could have been mod-
eled alternatively as a demand triangle with a demand of 10. In that case the variable X,
would be omitted, and the last equation would be —1/5X,, + 3X3; = 10.) If 2 units start on the
arc from node 1 to node 2, the multiplier of 2 will cause 4 units to arrive at node 2. Likewise,
10 units starting on the arc from node 2 to node 4 will result in —2 units arriving at node 4 (or,
equivalently, 2 units leaving node 4 on that arc) since the multiplier in this case is ~1/5.

July-August 1990
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Applications of Generalized Networks

Generalized networks can successfully
model many problems that have no pure
network equivalent. This is made possible
by two useful interpretations of arc multi-
pliers. First, multipliers can be viewed as
modifying the amount of flow of some
particular item. By means of flow modifica-
tion, generalized networks can model such
situations as evaporation, seepage, deterio-
ration, breeding, interest rates, sewage
treatment, purification processes with
varying efficiencies, machine efficiency,
and structural strength design. However, it
is also possible to interpret the multiplica-
tion process as transforming one type of
item into another. This interpretation pro-
vides a way to model such processes as
manufacturing, production, fuel to energy
conversion, blending, crew scheduling,
manpower to job requirements, and cur-
rency exchanges. The following applica-
tions are examples of possible uses of
generalized networks.

Bhaumik [1973] modeled a water distri-
bution system with losses as a generalized
network problem. This model is primarily
concerned with the movement of water
through canals to various reservoirs. How-
ever, it also considers the retention of wa-
ter over several time periods. The multi-
pliers in this case represent the losses from
evaporation and seepage.

Gilliam and Turner [1974] proposed a
file reduction model that has the form of a
generalized transportation model with a
single extra constraint. This model is de-
signed to facilitate the reduction of ex-
tremely large microdata files to smaller,
statistically representative files. The objec-
tive is to minimize the amount of informa-
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tion lost in the reduction process. The arcs
represent paths from the original records
to the reduced records. A nonzero flow on
an arc implies that the original record is to
be represented by the reduced record con-
nected to it by that arc. The multipliers on
the arcs are used to insure that the reduced
file is truly representative of all of the
original records.

Kim [1972] utilized generalized networks
to represent copper refining processes and
modeled the electrolytic refining procedure
by a large d-c electrical network. The arcs
are current paths with the multipliers rep-
resenting the appropriate resistances. In
this way, Kim analyzes the effect of short
circuits in the refining process.

Charnes and Cooper [1961] identified
applications of generalized networks for
both plastic-limit analysis and warehouse
funds-flow models. In plastic-limit analy-
sis, the network is generated by forming
the equations for horizontal and vertical
equilibria and by employing a coupling
technique. The warehouse funds-flow
model is actually a multi-time period
model. The arcs are used to represent
sales, production, and inventory of both
products and cash. The multipliers are in-
troduced to facilitate the conversions
between cash and products.

Crum [1976] modeled a cash manage-
ment problem for a multi-national firm as
a generalized network. This model incor-
porated transfer pricing, receivables and
payables, collections, dividend payments,
interest payments, royalties, and manage-
ment fees. The arcs represented possible
cash-flow patterns and the multipliers,
costs, savings, liquidity changes, and
exchange rates.
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While the Alaskan Pipeline was being
built, Congress funded the development of
a model for the distribution of natural gas
across the United States. The model in-
cludes the largest 240 distributors and the
largest 100 pipelines in the United States.
The model used multiple objective func-
tions to represent the hierarchical way gas
is distributed (residential customers before
commercial customers, and so forth). Using
a commercial LP code to solve this model
cost over $1,000 for each solution run.
However the problem can be modeled as a
generalized network; because gas in the
pipeline is used to drive the pipeline
pumps, gas is lost as it moves along the
pipeline. The generalized network code
NET-G [Glover, Hultz, Klingman, and
Stutz 1978] solved the model for about $12
per run.

Glover, Glover, and Martinson [1984]
use a netform model somewhat differently;
they formulated a large-scale linear-
programming problem for resource plan-
ning as a generalized network with side
constraints. These constraints had the spe-
cial form of compelling flows on certain
arcs to satisfy proportionality restrictions
based on flows of other related arcs. Signif-
icantly, all linear programming problems
can be represented as generalized net-
works with these types of side constraints,
although in this setting these constraints
arose naturally and were not created as a
modeling device.

The goal of this model was to determine
the optimal management of public range-
lands by the US Bureau of Land Manage-
ment (BLM) relative to uses for grazing
and for supporting wildlife. This required
identifying optimal numbers of animals of
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various types, in consideration of their di-
etary requirements, that would be allowed
to populate specific regions. The large size
of the problem arose from the massive
area of rangelands involved and the multi-
ple nutritional and geographic factors af-
fecting the possible allocations of different
wildlife types to these regions. A simplified
component of the model is shown in
Figure 4.

To carry out necessary analysis, the BLM
wanted to solve multiple versions of these
problems daily. The amount of time
needed to solve them using standard linear
programming made it impractical. A spe-
cialized procedure for progressively setting
and revising arc bounds in the netform,
however, made it possible to solve these
problems 20 to 300 times faster than by
the previous LP system, obtaining solu-
tions within 95 percent of optimality (usu-
ally 98 percent or better). The speed im-
provements were greatest for the larger
problems where the time factors were in-
creasingly critical. The Bureau of Land
Management routinely uses the netform-
based system an average of 700 times a
month throughout the US.

Another generalized transshipment net-
work was the basic component of an
optimization-based logistics planning sys-
tem that Klingman, Mote, and Phillips
[1988] developed for W. R. Grace Com-
pany, one of the nation’s largest suppliers
of phosphate-based chemical products.
The mathematical model underlying this
system includes production, distribution,
multiple time periods, and multiple com-
modities. W. R. Grace initially formulated
the model as a linear programming prob-
lem with 3,696 constraints and 21,564

19



GLOVER, KLINGMAN, PHILLIPS

Animal Nodes Plant Nodes

Figure 4: US Bureau of Land Management model. In the geographical region represented by
this diagram, there are two types of animals, represented by the nodes labeled 1 and 2, each of
which can consume varying amounts of three types of plants, represented by the nodes labeled
A, B and C. The volume of food consumed by each animal of types 1 and 2 are represented by
the multipliers M, and M,, respectively, shown associated with the arcs entering nodes 1 and
2. These multipliers transform numbers of animals flowing on these arcs, denoted by F, and F,
and determined by allocations in other parts of the network, into total volume of food con-
sumed. Each of the arcs from the animal nodes to the plant nodes has a lower and upper
bound of the special form illustrated within parentheses for the first and last of these arcs. The
distinguishing feature of these bounds is that they are variable, and depend on the amounts of
flow F; and F, entering nodes 1 and 2. Specifically, two fractions f,, and g,, are applicable to
the arc from node 1 to node A, indicating that the amount of flow on this arc must be at least
FixM;+f,, and at most F, *M, % g, (which identifies the least and greatest quantities of plant A
that type 1 animals will consume in an appropriate diet). Similar variable bounds bracket the
flows on the other arcs from animal nodes to plant nodes, as illustrated on the arc from node 2
to node C. The total available quantity of each of the three plant types in the given region is
represented by the bounds on the arcs out of nodes A, B and C. The BLM objective was to
utilize the total plant food available to the fullest extent possible, subject to the dietary re-
quirements of the various animal species. This was accomplished by placing a cost of —1 (that
is, a profit of 1) on the arc leaving node R and using a cost-minimizing algorithm to solve the
problem.

variables. An integrated approach to mod-
eling and solving the problem enhanced
top management’s understanding of the
model and made the problem more tracta-
ble for the company’s DEC 20/60 com-
puter. The key features of this approach
are decomposition of the problem into a
generalized network component and a
small linear nonnetwork component, trans-
formation of the generalized network com-
ponent into a pure network component,
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incorporation of most of the nonnetwork
component into the pure network via an
innovative relaxation approach, and incor-
poration of the remainder into the objec-
tive function via Lagrangian procedures.
The resulting model relaxation was solved
using efficient pure network solution tech-
niques to obtain an advanced starting basis
for a basis partitioning algorithm. This ap-
proach reduced solution time approxi-
mately 10-fold. In addition, W. R. Grace
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used insights obtained from the solutions
to make multimillion dollar decisions.

Additional applications of generalized
networks include machine loading prob-
lems [Charnes and Cooper 1961; Wagner
1969], blending problems [Charnes and
Cooper 1961; Wagner 1969], the caterer
problem [Dantzig 1963; Wagner 1969], and
scheduling problems such as production
and distribution problems, crew schedul-
ing, aircraft scheduling, and manpower
training [Charnes and Cooper 1961;
Dantzig 1963; Wagner 1969].

Integer Generalized Networks

An especially important realm of appli-
cation extends the use of generalized net-
works by requiring that flows on particular
generalized arcs must occur in integer
(whole number) amounts. Introducing the
integer requirement into the GN problem
enables it to model an unexpected diversity
of additional applications, including such
problems as scheduling variable-length
television commercials into time slots, as-
signing jobs to computers in computer net-
works, scheduling payments on accounts
where contractual agreements specify
lump sum payments, and designing com-
munication networks with capacity
constraints.

Using integer requirements in GN prob-
lems enables any 0-1 LP problem to be
modeled as an integer GN problem
[Glover, Klingman, and McMillan 1977;
Glover and Mulvey 1980]. These tech-
niques can also accommodate mixed inte-
ger 0-1 LP problems where the continuous
part of the problem is a transportation,
transshipment, or generalized network
problem itself. An illustration in Crum,
Klingman, and Tavis [1979] shows how
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contemporary financial capital allocation
models can be modeled as integer GN
problems. Important real-world applica-
tions with such a “mixed” structure also
include a variety of plant location models,
energy models, and physical distribution
models.

Integer generalized networks are also
used to model requirements that flows on
certain arcs must equal their upper or
lower bounds, or that at least (or at most) a
specified number of arcs from particular
sets must have zero flows and other similar
logical requirements. These netform repre-
sentations consisting of networks with eas-
ily specified side conditions are able to rig-
orously express all problem elements that
would ordinarily require expression in an
algebraic form (as by customary mathe-
matical programming formulation tech-
niques). Consequently, they effectively re-
place the obscure and unilluminating alge-
braic representation by an equivalent, but
much easier to understand, pictorial repre-
sentation. We will show how this comes
about by several examples, beginning with
a fundamental technique that reappears in
various guises in a variety of practical set-
tings. The applications also demonstrate
that the underlying network-related struc-
tures of the netform approach can often be
exploited by special solution methods that
are far more efficient than the methods
previously developed for the algebraic
representations.

Figure 5 illustrates a useful modeling de-
vice based on integer constrained general-
ized arcs commonly employed in the net-
form approach. An extension of this device
to handle an even more useful set of con-
ditions is illustrated in the model compo-
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nent shown in Figure 6. The combination
of arc multipliers and 0-1 integer restric-
tions gives rise to what generally is called
an integer network or a 0-1 generalized
network. The following real-world applica-
tions demonstrate more fully uses of this
netform modeling tool.
Applications of Integer Generalized
Networks

The netform concept has also improved
the solution of a mixed integer program-
ming problem for determining the mini-
mum cost refueling schedule for nuclear
reactors. Kazmersky [1974] initially mod-
eled this problem as a mixed integer pro-

Figure 5: Generalized network with integer
flow restriction. This figure represents only a
component of a model, and thus no supplies
or demands are shown. The bounds, costs,
and multipliers are depicted by the same con-
ventions employed before. In addition, the
asterisk on the arc from node 0 to node A in-
dicates that its flow must be an integer. If the
flow is 0, then 3-0 = 0 and no flow gets trans-
mitted to node A. But if the flow is 1, then 3
units are transmitted to node A. Further, be-
cause of the upper bounds of 1 on each of the
three arcs leaving node A, the only possible
way to distribute the three units flowing into
node A is to send exactly one unit to each of
the nodes 1, 2, and 3. Thus, by giving all arcs
bounds of 0 and 1 and introducing a general-
ized arc, the following effect has been
achieved: when the flow on the arc from node
0 to node A is 0, the flow on each of the three
arcs out of node A is 0; when the flow on the
arc from node 0 to A is 1, the flow on each of
the three arcs out of node A is 1.
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gramming problem with no apparent con-
nection to networks. However, after work-
ing closely with Dr. Kazmersky, we
discovered a way to express the problem
by a 0-1 GN that was not only equivalent
to the original formulation but that also
succeeded in reducing the size of the prob-
lem [Glover, Klingman, and Phillips 1988].

Investment Decision a

Equipment Types

Figure 6: An equipment investment. This fig-
ure is the same as Figure 5 except that multi-
pliers have now been added to the three arcs
leaving node A. For concreteness, we may
suppose this diagram represents an invest-
ment decision: to invest in project A (if the
flow on the arc from 0 to A is 1) or not to in-
vest in project A (if the flow on the arc from 0
to A is 0). Then the nodes 1, 2, and 3 identify
different components of this investment proj-
ect, In this example, the investment project is
set in an equipment purchase context, and
nodes 1, 2, and 3 represent different equip-
ment types. In other contexts, these nodes
might represent different types of aircraft in
a fleet, different parcels of land in a real es-
tate venture, different types of stock in a
portfolio, etc. The multipliers on the arcs into
nodes 1, 2, and 3 represent the quantities of
each component of project A (each type of
equipment) that would be acquired if in fact
the decision is made to invest in that project.
By the conventions and flow relationships
previously described, the diagram of Figure 6
transforms the investment into its compo-
nents in precisely the manner desired; that is,
a flow of 1 on the arc from node 0 to node A
(representing the decision to invest) translates
into six units of equipment 1 at node 1, eight
units of equipment 2 at node 2, and five units
of equipment 3 at node 3.

22



NETFORM MODELING

While the original formulation by itself
consumes more than 20 pages [Kazmersky
1974], we described the full 0-1 GN model
in a handful of pages without using
complex mathematical notation.

In addition, making use of the 0-1 GN
formulation, we were able to develop a
branch-and-bound solution procedure that
solved GN subproblems, yielding signifi-
cant gains over previous solution efforts.
We solved four versions of this problem
using data supplied by the Tennessee Val-
ley Authority. The first three versions,
which required half an hour to two hours
to solve on an IBM 4381 computer using
the MPSX solution system, took less than
20 minutes using the 0-1 GN formulation
and the specialized solution approach. The
fourth version was by far the most diffi-
cult, involving 173 constraints, 126 zero-
one variables, and 511 continuous vari-
ables. The original mixed integer formula-
tion was run for seven hours on an IBM
4381 using MPSX and then taken off the
machine to avoid further computer-run
costs. At the end of the seven hours, the
best (minimum cost) solution obtained had
an objective function value of
$136,173,440. We imposed a time limit of
30 minutes on the 0-1 GN solution effort
and obtained a solution that had an objec-
tive function value of $125,174,727: an
improvement of more than $10,000,000.
As this application shows, using the net-
form approach can improve the solutions
for problems too complex to be solved op-
timally (within practical time limits) by
standard approaches.

In another application of integer gener-
alized networks, Glover, Klingman, and
Mote [1989] addressed the problem of de-
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veloping optimization models and proce-
dures for maximizing the collective profi-
ciency (or “readiness”) levels of US Army
units. The models they proposed address
both equipment procurement decisions and
allocation decisions. The mathematical for-
mulations of these models constitute large-
scale, mixed-integer programs that poten-
tially contain over 8,500 constraints and
150,000 discrete variables. The new ap-
proach developed for this problem may be
viewed as an integration of optimization
strategies and intelligent search strategies.
The integer programming formulation can
be given a netform representation as a dis-
crete generalized network (Figure 7), pro-
viding a basis for identifying structure ca-
pable of being exploited both
mathematically and heuristically.

The preliminary results that the authors
obtained from empirical testing on ran-
domly generated problem data are very
encouraging. Prescriptions derived from
the solutions indicate that the US Army
may be able to improve total unit profi-
ciency levels by as much as 25 percent,
while dramatically reducing solution time
(compared to the Army’s current expert
system, solution time will go from 17
hours to less than four minutes for a stan-
dard sized problem). Based on these re-
sults, the US Army is launching a long-
range development project to implement
this approach.

Future Directions

We are entering a new age of computer
applications. The evolution of ideas and
perspectives that has led to expert systems,
knowledge engineering, object oriented
programming, and intelligent work stations
has underscored the fundamental role of
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Unit Nodes

Equipment Nodes

Py (&U*A

Budget Node

Figure 7: Mixed integer generalized network formulation for Army readiness. The arcs into
nodes U, represent the decision to upgrade unit i to its desired proficiency rating. The arc be-
tween nodes U; and E; represent whether unit 7 is allocated equipment type j to eliminate a
shortage. The two arcs out of node E, represent the number of items of equipment allocated
from inventory or procured, respectively. The coefficients are defined as follows: P; = positive
weight assigned to unit 7 denoting the unit’s relative priority for proficiency upgrading; N;

= number of equipment categories in which unit / must eliminate equipment shortages in or-
der to receive the desired proficiency rating; S;; = minimum number of items of equipment
type j which unit i must receive in order to eliminate a shortage; C; = unit cost to procure one
item of equipment type j; K; = number of items of equipment category j in inventory; Q,

= upper bound on procurement quantities for equipment category j; and D = total fiscal

budget available for procurement.

representational systems in interactions be-
tween human beings and machines. Be-
cause we tend to express complex relation-
ships by pictures and diagrams, technology
is relying increasingly on pictorial repre-
sentations as an indispensable element of
new advances.

Netforms are being drawn into this pro-
cess in a natural fashion and are currently
stimulating the design of intelligent inter-
faces on several fronts. Netforms' legacy of
successful applications of visual modeling
technology, spanning diverse business,
government and scientific settings,
provides a background for bringing picto-
rial representations into human-machine
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interfaces to achieve practical, bottom-line
benefits.

Greenberg [1987, 1988] and Murphy,
Stohr and Asthana [1988] propose uses of
netforms as integral parts of system diag-
nosis and suggest ways to create intelligent
front and back ends for computer optimi-
zation software. Glover and Greenberg
[1987] propose using netforms to enhance
the operation of expert systems. A growing
body of research is dedicated to detecting
network structures that may be hidden in-
side more complex models [Bixby 1984;
Bixby and Wagner 1985; Brown, McBride
and Wood 1985; Truemper 1983]. This has
led more recently to research into creating
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these and other netform structures in prob-
lem settings where they may not otherwise
be found [Glover and Klingman 1988a].

Currently, Freeman et al. [1989] are de-
veloping a computer system for causal
analysis called PRONET in the telecommu-
nications industry that is an artificial intel-
ligence (Al) tool to facilitate reasoning
about complex interrelationships. The un-
derlying constructs of this system are
highly compatible with those of netforms,
and they envision linking the Al features
with optimization by relying more fully on
netform representations in the next stage.

With these innovative developments,
netforms are being used in a growing
number of realms, and these uses affect
how problems are translated into solvable
forms and how they are conceptualized
and communicated. More important, these
applications are affecting the range of
problems we perceive as susceptible to for-
mulation, enlarging the domains we can
represent for obtaining improved insights
and solutions.
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